Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Environ Int ; 157: 106818, 2021 12.
Article in English | MEDLINE | ID: covidwho-1491995

ABSTRACT

This global study, which has been coordinated by the World Meteorological Organization Global Atmospheric Watch (WMO/GAW) programme, aims to understand the behaviour of key air pollutant species during the COVID-19 pandemic period of exceptionally low emissions across the globe. We investigated the effects of the differences in both emissions and regional and local meteorology in 2020 compared with the period 2015-2019. By adopting a globally consistent approach, this comprehensive observational analysis focuses on changes in air quality in and around cities across the globe for the following air pollutants PM2.5, PM10, PMC (coarse fraction of PM), NO2, SO2, NOx, CO, O3 and the total gaseous oxidant (OX = NO2 + O3) during the pre-lockdown, partial lockdown, full lockdown and two relaxation periods spanning from January to September 2020. The analysis is based on in situ ground-based air quality observations at over 540 traffic, background and rural stations, from 63 cities and covering 25 countries over seven geographical regions of the world. Anomalies in the air pollutant concentrations (increases or decreases during 2020 periods compared to equivalent 2015-2019 periods) were calculated and the possible effects of meteorological conditions were analysed by computing anomalies from ERA5 reanalyses and local observations for these periods. We observed a positive correlation between the reductions in NO2 and NOx concentrations and peoples' mobility for most cities. A correlation between PMC and mobility changes was also seen for some Asian and South American cities. A clear signal was not observed for other pollutants, suggesting that sources besides vehicular emissions also substantially contributed to the change in air quality. As a global and regional overview of the changes in ambient concentrations of key air quality species, we observed decreases of up to about 70% in mean NO2 and between 30% and 40% in mean PM2.5 concentrations over 2020 full lockdown compared to the same period in 2015-2019. However, PM2.5 exhibited complex signals, even within the same region, with increases in some Spanish cities, attributed mainly to the long-range transport of African dust and/or biomass burning (corroborated with the analysis of NO2/CO ratio). Some Chinese cities showed similar increases in PM2.5 during the lockdown periods, but in this case, it was likely due to secondary PM formation. Changes in O3 concentrations were highly heterogeneous, with no overall change or small increases (as in the case of Europe), and positive anomalies of 25% and 30% in East Asia and South America, respectively, with Colombia showing the largest positive anomaly of ~70%. The SO2 anomalies were negative for 2020 compared to 2015-2019 (between ~25 to 60%) for all regions. For CO, negative anomalies were observed for all regions with the largest decrease for South America of up to ~40%. The NO2/CO ratio indicated that specific sites (such as those in Spanish cities) were affected by biomass burning plumes, which outweighed the NO2 decrease due to the general reduction in mobility (ratio of ~60%). Analysis of the total oxidant (OX = NO2 + O3) showed that primary NO2 emissions at urban locations were greater than the O3 production, whereas at background sites, OX was mostly driven by the regional contributions rather than local NO2 and O3 concentrations. The present study clearly highlights the importance of meteorology and episodic contributions (e.g., from dust, domestic, agricultural biomass burning and crop fertilizing) when analysing air quality in and around cities even during large emissions reductions. There is still the need to better understand how the chemical responses of secondary pollutants to emission change under complex meteorological conditions, along with climate change and socio-economic drivers may affect future air quality. The implications for regional and global policies are also significant, as our study clearly indicates that PM2.5 concentrations would not likely meet the World Health Organization guidelines in many parts of the world, despite the drastic reductions in mobility. Consequently, revisions of air quality regulation (e.g., the Gothenburg Protocol) with more ambitious targets that are specific to the different regions of the world may well be required.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Cities , Communicable Disease Control , Environmental Monitoring , Humans , Pandemics , Particulate Matter/analysis , SARS-CoV-2
2.
Air Qual Atmos Health ; 14(10): 1549-1570, 2021.
Article in English | MEDLINE | ID: covidwho-1240059

ABSTRACT

We have investigated the impact of reduced emissions due to COVID-19 lockdown measures in spring 2020 on air quality in Canada's four largest cities: Toronto, Montreal, Vancouver, and Calgary. Observed daily concentrations of NO2, PM2.5, and O3 during a "pre-lockdown" period (15 February-14 March 2020) and a "lockdown" period (22 March-2 May 2020), when lockdown measures were in full force everywhere in Canada, were compared to the same periods in the previous decade (2010-2019). Higher-than-usual seasonal declines in mean daily NO2 were observed for the pre-lockdown to lockdown periods in 2020. For PM2.5, Montreal was the only city with a higher-than-usual seasonal decline, whereas for O3 all four cities remained within the previous decadal range. In order to isolate the impact of lockdown-related emission changes from other factors such as seasonal changes in meteorology and emissions and meteorological variability, two emission scenarios were performed with the GEM-MACH air quality model. The first was a Business-As-Usual (BAU) scenario with baseline emissions and the second was a more realistic simulation with estimated COVID-19 lockdown emissions. NO2 surface concentrations for the COVID-19 emission scenario decreased by 31 to 34% on average relative to the BAU scenario in the four metropolitan areas. Lower decreases ranging from 6 to 17% were predicted for PM2.5. O3 surface concentrations, on the other hand, showed increases up to a maximum of 21% close to city centers versus slight decreases over the suburbs, but Ox (odd oxygen), like NO2 and PM2.5, decreased as expected over these cities. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11869-021-01039-1.

3.
Remote Sensing ; 12(24):4112, 2020.
Article in English | MDPI | ID: covidwho-979122

ABSTRACT

A lockdown was implemented in Canada mid-March 2020 to limit the spread of COVID-19. In the wake of this lockdown, declines in nitrogen dioxide (NO2) were observed from the TROPOspheric Monitoring Instrument (TROPOMI). A method is presented to quantify how much of this decrease is due to the lockdown itself as opposed to variability in meteorology and satellite sampling. The operational air quality forecast model, GEM-MACH (Global Environmental Multi-scale - Modelling Air quality and CHemistry), was used together with TROPOMI to determine expected NO2 columns that represents what TROPOMI would have observed for a non-COVID scenario. Applying this methodology to southern Ontario, decreases in NO2 emissions due to the lockdown were seen, with an average 40% (roughly 10 kt[NO2]/yr) in Toronto and Mississauga and even larger declines in the city center. Natural and satellite sampling variability accounted for as much as 20–30%, which demonstrates the importance of taking meteorology into account. A model run with reduced emissions (from 65 kt[NO2]/yr to 40 kt[NO2]/yr in the Greater Toronto Area) based on emission activity data during the lockdown period was found to be consistent with TROPOMI NO2 columns.

SELECTION OF CITATIONS
SEARCH DETAIL